Home

Előzetes

A fizika négyféle kölcsönhatást ismer. Az elektromágnes kölcsönhatást, az atommagokat összetartó és a protonokat stabillá tevő erős kölcsönhatást, illetve a bomlásért és a neutrínókért felelős gyenge kölcsönhatást. Ezeket a részecskefizika Standard Modellje írja le.

A gravitáció a negyedik kölcsönhatás, de annak a magyarázata semmiféle módon nem illeszthető a másik három kölcsönhatáshoz.

Előzetes

A protonoknak és a neutronoknak is van belső szerkezete. Ütközési kísérletek során kiderült, hogy nagy energiájú ütközések esetén a protonban 3 szórócentrum is található. A szórási kísérletekben rengetek különféle tulajdonságú részecskék jelentek meg. A ritka részecskéket mezonokonak hívták, a többieket barionoknak.

Érdekesség, hogy a rengeteg részecskét egy matematikai modellel értelmezték és a részecskék közötti kölcsönhatásoknak megfeleltettek matematikai műveleteket és kiderült, hogy a matematikai modellbe beleillik minden felfedezett részecske.

Előzetes

A magerők közvetítéséhez - csakúgy, mint az elektromágneses kölcsönhatásnál - szükséges egy részecske. Ez a Pi-mezon (Pion)

P-mezon (töltött):

  • mpion = 139,57 MeV/c2
  • Elektromos töltése: ±
  • spinje: 0

P-mezon (semleges)

  • mpion = 135 MeV/c2
  • Elektromos töltése: 0
  • spinje: 0

További nehéz részecskéket találtak kozmikus sugárzásban. Ködkamrákban észlelték őket, különböző reakciókban vettek részt.

Előzetes

A XX. század első felében több elméleti fizikus "játszadozott" a fizikai tényeket leíró egyenletekkel és ennek eredményeként megjósolták, hogy létezhetnek olyan elektronok, amelyeknek pozitív a töltése. ezeket pozitronoknak nevezték el, amelyet a kísérleti fizikusok 1932-ben detektáltak is.

Előzetes

Miután kiderült,m hogy a fotonok (fény) kettős természetű, azaz részecskeként és hullámként is viselkedhet felvetődött az a kérdés, hogy más anyagok is viselkedhetnek-e időnként hullámként.

Előzetes

A XIX. század végén és a XX. század elején több kutató is vizsgálta a sugárzó anyagokat és azt találta, hogy egyes anyagok normál állapotban is különböző sugárzásokat bocsátanak ki. ezt a kutatók alfa, béta és gamma sugárzásnak nevezték el. Az alfa és a béta sugárzás mágneses térben eltérültek, míg a gamma sugárzás nem. Ma már tudjuk, hogy az alfa sugárzást He atommagok alkotják, a béta sugárzást elektronok, a gamma sugárzás pedig nagyon nagy energiájú fotonokból áll. ezek et elnevezték radioaktív sugárzásoknak.

Előzetes

A mindennapi életben az olyan fogalmak, mint hőmérséklet, nyomás stb... a mikrovilágban lévő nagy számú részecske viselkedésének az átlagaként jön létre. Néhány köbcentiméter levegőben több milliárd részecske található. Általában az egyes részecskék állapotát nem tudjuk külön-külön vizsgálni, megfigyelni. Ilyen módon az elemi részecskék sebességét és pozícióját nem lehet tetszőleges pontossággal egyszerre megvizsgálni. Több olyan mérhető fogalom pár van, amelyet egy időben nem lehet egyszerre mérni.

Előzetes

A XX. század első felében rengeteg kísérletet végeztek a magreakciók vizsgálatára és azt tapasztalták, hogy a reakciók során több olyan részecske is megjelent az ütközések vagy hasadások során, amelyek korábban nem voltak ismertek.

Előzetes

elektron - Negatív töltésű részecske: -1. A tömege kb. 1840-szor kisebb, mint a neutroné és a protoné.

proton - Pozitív töltésű részecske: +1. Az elektron tömegének 1840-szerese.

neutron - Tömege majdnem ugyanannyi, mint a protoné. Elektromos töltöttség szempontjából semleges: 0.

Előzetes

Tömegek mérése